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It is best to use the above formula when b> 1, otherwise we have to apply formula 
9.131 and 9.132 from /5/. In order to demonstrate their use, we will obtain the NSIC for 
the case when b = 0, i.e. for the case when the force P is applied directly to the edge 
z=+o of the crack. In this case Gauss's function in (5.10) should be transformed using 
formula 9.132(2) from /5/, and this will enable us to carry out, after some reduction, the 
passage to the limit as b-to. As a result we obtain 

A',(') = n-*P @a)-"( (8 - 3~) (1 - ,@I. 
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FRACTURE OF A NARROW BRIDGE BETWEEN CRACKS LYING IN THE SAME PLANE* 

S.A. NAZAROV and O.R. POLYAKOVA 

The stress-deformation state of an isotropic elastic space weakened by a 
family of cracks of normal separation is investigated. In some regions 
the crack edges come closer to each other, and form narrow bridges 
(ligaments). An asymptotic form of the solution of the problem is 
constructed under the assumption that the bridge either contracts to a 
contour, or becomes an open arc. Special features of the stresses at 
the tip of the bridge are studied for various forms of the tip. 
Asymptotic formulas obtained are used to produce variational 
formulations of the problems, and the lack of uniqueness of these 
solutions is interpreted as the instability of the process of disruption 
of narrow bridges. Examples are considered. 
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1. A bridge contracting to a cE0Sed cO?tt0W. Let C denote a region in the plane RZ 
with a snooth (class Cm) boundary aG, where G is either a bounded set or the outside of 
a bounded set. In addition, let r be an arbitrary smooth closed contour of length x, 
titu;t;pni,n G, and let (n, s) be a natural system of local coordinates in the neighbourhood 

is the distance along the normal and s is the arc length). we put r, = {(n, s): 

SE 10, 1), ---EL (s)< n < eh, (8)) and GE = G\l?, and here h* are smooth positive functions, 
h = h+ + h_ is the width of the bridge and O<E is a small parameter (all coordinates 
are dimenionless). We shall consider a homogeneous elastic isotropic space R’ with a crack 
Ge in the plane {r = (,y, z) :.z = 0}, and a symmetric normal load p(y) which is a func- 
tion which is smooth in 6, is applied to the edges G$ of the crack. Using the Papkovich- 
Neuber representation we can reduce problem /I/ to that of determining the function d 
harmonic in the half-space R,Y = {z:z>O}, and satisfying the conditions 

ve(y, 0) = 0, y E R2\G,; (a,@)@, 0) = P(y)= -~~'(1 -v)p(y), y E@ (1.1) 

Here v is Poisson's ratio, n is the shear modulus, ai = aiaz. When s-to, the bridge 
r8 contracts to a closed contour I?. The asymptotic form of solutions of the problem in 
the regions with similar singular perturbation of the boundary was studied in /2-5.f. The 
principal term of the expansion of ve is sought, as E-+0, in the form 

In (1.2), cf, is Green's function for Poisson's equation in R+Y with boundary con- 
ditions of the type (1.1)‘ and T is the coordinate of the point n = (?b,n& on the arc I'. 
The first integral corresponds to the load p, and the second integral corresponds to the 
normal force distributed along the contour I', at some smooth density p (1 - v)-' y. In 
order to obtain the equation for y, we shall find the asymptotic expansion for the function 
(1.2) at r = (n* + 7?)“~30. Since JD (2; 9, 0) =(2x)-l (I y - q I2 -+ zz)-'/s + 0 (I), it follows that 
the regularization of the second integral in (1.2) leads to the formulas 

fl (r) = Y(S) (n-r In (Vak @) r) - b (.v)) + Vy) (.Y) - g (s) i- 0 (r I In I I) 
(r-+ 2) 

(1.3) 

b (3) = s (Q (Y, 0; q, 0) - x (7 - s) S (z, s)) dz - 

r& (1 - xtr - s)) R (2,s)) dr 

(1.4) 

R (z, s) = (Zs)-r k (s) [2 (1 - cos [(z - s) k (s)])]“~ 

g(s)= s~(~)~~~,o;~,o)~~ 
a 

(JY)W = \ (Y (4 - v (a Q (Yt 0; rlt 0) & 
+ 

(1.5) 

Were xEhT:m(~d, d) is the cutoff function, x(t)= 1 when 
number, and 

I T 1 < ‘l,d, 0 <d is a small 
S 1s the curvature of the contour F at the point s. We note that the factor 

accompanying y in (1.3) has no singularities when k(.P)=O, and according to (1.4) the 
difference In k(s)- xb(s) remains bounded when s+s". It can be confirmed that the integral 
operator (1.5) is a pseudodifferential operator with the principal symbol n-'In I E 1. 

A boundary layer appears near the bridge I'.. We shall now introduce the "stretched" 
variables 5 = (&, &)= L&(s)]-'(n, a). Let us change to the coordinates 6,s and write e = 0. 
As a result we obtain the following parametric problem depending on SC I' for the function 
d (57 s) of the boundary layer type: 

The solution of this problem, 
the equation 

which increases logarithmically at infinity, is given by 

I#(& s) = a(s)lr1~2&--h-~(h+ -b,_) + 2 [(&_.+0)(6 + h_Xr)l"* 1, 0.6) 

5 = 51 + Ka 

Using the conditions of matching the expansions (1.3) with the expansion of 
a(s)ln(4 1 5 I) + O(l 5 I-'), I g I-+ m, we obtain the relations 

r@ (5, 5) = 
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a (s) = rc-‘y (5) (1.7) 

[z-l (In (eh (s) k (s)) - 5 In 2) - b (41 Y (s) -t (JY) (8) = g (s) (1.8) 

Thus the density y represents the solution of integral Eq.(1.8). Since @(Y, 0; % 0) 
is a Positive symmetric function of the variables y and .n, it follows that J is a symmetric 
and non-negative definite operator. In particular, we have 

Y (s)(Jy)(s) ds = + s s 1 y (4 - y (2) la @ (~7 0; rlt 0) dsdz 
I-r 

W-J) 

Let us now denote by al,< & < . . . and @r,$%, . . . the sequences of the eigenvalues 
and corresponding eigenfunctions of the operator 

.I,, = x-l (ln (hk) - 5 In 2) - b + J (1.10) 

normed in L, (0. We note that when E = Sk 3 exp(--n&J, Eq.tl.8) has, generally speaking, 
no solution, and ar-).O as k-Lea. It follows therefore that we have to determine, just 
as in 12-51, only the asymptotic solution. Let us write 

m 
gfs) = k~r&%% fsf9 ?i'k@) = tK?_,,. (% + z-r lns)-l h&k (si fl.lf) 

Since g is a smooth function on r, it follows that ye satisfies Eq.(1.8) with the 
accuracy of O(EX) for large N. 

Thus we have constructed the smooth-type function (1.3) and boundary layer-type function 
(1.6). Matching these functions yields a global asymptotic approximation to the solution of 
Eq.fl.1). The estimate Ofe IInef) of the residue in the asymptotic expression is checked 
just as in /3, Sl. 

The relation f u(x)- ru”(<,s) I< CE IIns 1 holds near the bridge r,. This relation, 
together with (1.6) and (1.71, leads to the following formula for the stress intensity 
coefficient (SIC) at the edges ra* = {z:z = 0, SE LO, I), n = +gh (8)) of the cracks: 

v (5) = P-1 (1 -Y) (2r.pn-‘)1/* K* (s, e) sin l/%~ (1.12) 

K, (s, E) = (neh (s)/2)-'1%~ (1 - v)-l y (s) + 0 (a"~ / In E 1) 

Here (r&t tpd are polar coordinates in the planes perpendicular to the contours r.$. 
Eq.(1.8) contains a large parameter ]lneI, and the solution v, can, in turn, be 

expanded in a series in inverse powers of lIneI 

Ye(S) - kze j he/-h‘-w (s) (1.13) 

+@'(s) = --ng (s), yfr+r) (s) = 31 (&y(k)) (8) 

We note that when g<O on r and for small E>O the density Ye is positive i.e. 
we have an extension taking place around the bridge. 

Let G=RB and Is= (y: R< [yl<R+ e) (two half-spaces joined along a thin ring). In 
this case k @)= R-‘,h (s) = 1, 6 (4 = 0, and 

We shall discuss two versions of the loading: lo. Normal forces q applied at the point 
y=O; 2". A uniform normal load of constant intensity p” 
circular crack. 

at the edges of internal 
By virtue of the axial symmetry the densities YI and 7% are constant, and 

the integral equation becomes algebraic. The solutions are represented by yt-=.4nF-'(1 -4) Roq 
and Ya = (311)-1 (1 - vf WP’, respectively, whereo= fin (eR+f--shz)-1%. Formulas (1.12) supply the 
asymptotic form to the SIC with an accuracy of the order of o(a'l*lIaa~). 

K*(l) (% a) - (a~/2)-"~40Rq, Kj,(") (s, F) - (Znc)-"",p" (nR)-’ 

2. A bridge contracting to an arc. we shall use the same notation as in Sect.1, and 
denote by p'c r the arc of length 1, terminating at P, and P,. We shall assume that 
the set F, has the form {(n, s) : sty [O, 21, -eh_ (s)< JZ < eh, (s)). First we shall &CUSS the 
possible form of the bridge near the point P, for FE). We shall consider the following four 
versions: 1". 4 (0) = 0, &' (0) + 0 fanglef , 2". k* (0) = h+' (O)- 0 (peak), 3". hk (s) = s"% (PO 4 
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0 (4) and s- +0 (small but positive radius of curvature of the tip of the bridge r,); 
4". h* (0) # 0 (a blunt tip). 

lo. The region R"\ re is diffeomorphic near the point P, with a cone produced by 
removing from the space a crack, angular in the plane, with an aperture angle of the order 
Of Ev (0) (Dirichlet conditions are prescribed at the crack edges). The stress-deformation 
state near a similar singularity is determined by the stress singularity factor n(8). The 
factor represents an eigenvalue of some spectral problem in the region cut out by the cone 
from the unit sphere. The asymptotic expansion of such eigennumbers has the form /6/ A(s) = 
-1 - (2 ln E)-l + 0 (I hl E I-"). Since the SIC on I?, behaves like s*@)+"* as s--f +O, it 
follows that the crack is not in the state of local equilibrium near P,. 

2". Let us calculate the asymptotic expansion of the stress-deformation state near the 
tip of a plane crack, representing the outside of the peak S = {Y E Ra : Y, > 0, I Y, I < my,“) 
where m>O and n = 2, 3, . . . . We will denote by p, 0, 'p the spherical coordinates with 
centre at the point 0 (the north pole of the unit sphere is .placed at the point (1, 0. O)), 
and the variables E, = m-'X,-"Xj+l, j = 1, 2 are denoted by 5 =(&, &.) Let us consider the 
function V harmonic in the neighbourhood of 0, subjected to the homogeneous Dirichlet con- 
ditions on S. According to /7-9/ the asymptotic form of the function V as P-t0 is sought 
in the form 

Tr (5) = C 1 In p 1-6 (x (0*/l) (1 + a 1 In p 1-l In (sin '/@)) + 
(1 - x (@'%)) cf I In P I-* w CL Ed 

Here x is the same cutoff as in (1.5), W is the function (1.6) at a(s) = 1, C is a 
constant depending on V and a and p are constants to be determined. 

Matching the asymptotic forms of the first two terms within the curly brackets as O-+0 
with the asymptotic forms of the third term as 15 I-+m, we find that a = (n-l)-'. Further, 
when 8> const, we have 

AP (5) = Cpez 1 In p I-@-1 {p - '/,a + 0 (I In p I-')} (p--f 0) 

Therefore fi = 12 (n - I)]-‘, and this means that outside of a small conical neighbourhood 
of the point 0 the stresses are of the order of p-l Ilnp I-@-l and the SIC at the crack edge 
is of th order of 0 (p-n/z 1 In p 1 -R-l). It is clear that such a crack cannot be in equilibrium. 

30. Near the point P, the edge of the bridge is smooth, and unlike in the previous 
case, the SIC remains bounded when s-+0. The corresponding boundary layer is constructed 
at the tip of this boundary, and it is there that case 4O will now be discussed. 

Let us consider problem (1.1) in assumption 3". The principal term of the asymptotic 
expression for its solution is given, as before, by formula (1.2) in which the contour r 
has been replaced by the arc I?'. The asymptotic expression (1.3) is also retained, with b 
and J and O(r IInr I) replaced by b',J' and 0(6(s) I In S(z) I) respectively. Here 
r [s (1 - s)l-1, J’ 

6 (x) = 
is the integral operator (1.5) on the arc r', and 

b' (s) = b(s) + 
s 

[X(‘-S)S(T-s) -(2n)_l(lz-s/-l- Is- 

dl~'los,d),Az+ 1 [X(r-s)B(z,s)-(2n)-'(/7- s+ 
A+(s) 

Isfd--lI-lln +)]dT 

(A- (s) = (s - d, O), A+ (s) = (1, s + d)) 

(2.1) 

In (2.1) b is given by (1.4). We assume that (a, fi) = @ when a> p. Just as in 
Sect.1, the boundary layer (1.6) leads to Eq.cl.7) and an integral equation on the arc I?' 
analogous to (1.8) 

In-' (In (Eh (s) k (s)) - 5 In 2) - b' (s)l y (s) + (J’ (y)) (s) = g (s) (2.2) 

We note that according to (2.1) and assumption 3" 
near the points P, and P,, 

concerning the form of the bridge 
the following relations hold: 

b' (s) 2 (2n)P In s + 0 (I), h (s) = $1. (2~~ + o (I)) (s-+ +o) 

b' (8) = (2n)-' In I I - s I + o (I), h (s) = I I - s la/. (2p, + 0 (I)) 
(2.3) 

(s-+ 2 - 0) 

Therefore, 
[O, II 

the expression within the square brackets in (2.2) is bounded in the interval 
and the asymptotic solution ye 

obvious transformations. 
of Eq.(2.2) will be given by the formulas (1.11) with 

However, unlike in the case of a closed contour the second integral 
of (1.2) will have logarithmic singularities near the ends P, and Pl of the arc r'. This 
leads to the need to construct a new type of boundary-layer. 
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Let us introduce the "stretched" three-dimensional coordinates 5 where 
s-%> Es = e-98. We change, in the neighbourhood of the point P,, to the variablji = E-2s1 " == 5, and 

put & = 0. As a result the set G, will be transformed into a parabola II = {EE RY:&> 0, 

/ & 1 <p,&,'ix,& = 0) (see the representation in (2.3)). The solution z@(g) of the three- 
dimensional boundary-layer type will now be a function that is harmonic in R+' and 
satisfying the following boundary conditions: 

z" (E) = 0, 5 E n; (a~~/&) (E) = 0, E E BR," \ n (2.4) 

In order to find the conditions which should be imposed on the function z0 at infinity, 
we note that 

f y(z)@(2; r),O)ds -= -(~Jc)-~ y(0)In[(r2 + .s~)'~* -s] + O(1) 
r' 

Thus the conditions of matching yield the representation 

z" (5) = y (0) (2n)_' In (I E I"$ - El) -i- 0 (1) (I g I * =I (2.5) 

We stress that the above representation holds outside the conical neighbourhood of the 
ray {E:E,>O,&=f,=O}, and a two-dimensional boundary layer analogous to (1.6) appears 
near the parabola. 

The solution required is derived from the well-known solution of the problem of an ex- 
ternal elliptical crack /lo/. Indeed, let the ellipse have the semiaxes 1 and 2-'I*p0s. After 
the change of variables 5, = se2 (I~ + I), Ez 7 E-%z~ the equation of the ellipse will be written 
in the form Es2 = poeEr (1 - r/&r). Passing formally to e = 0, we obtain the required parabola, 
and this implies that by handling the solution in exactly the same way we obtain a formula 
for z" with an unknown multiplier which will be determined by comparison with the asymptotic 
expression 12.5) (here it is convenient to assume that & = 5, = 0 and &- -m). 

The correctness of the transformations used can be confirmed by substituting the sol- 
utions into relations (2.4). Finally, the expression /lo/ for the SIC at the edge of external 
elliptical crack will enable us to calculate the SIC on XI. The latter depends on the 
variable s = EZE1 in the following manner: 

E-“1 (~f,,)-“3it (1 - V)-’ -$’ (0) (S f ‘/~,D~*E2)-“’ (2.6) 

By virtue of (2.3) formulas (2.6) and (1.12) are consistent and can be matched. 
According to (2.6) the SIC attains its maximum value at the point s =0 or s=l 

(this fact is mentioned in /lo/). If we assume that the bridge lYE was formed as the result 
of partial fracturing of a larger bridge, then it is natural to assume that the SIC is constant 
on the resulting edge. The relation (1.2) shows that in this case it is necessary that the 
function h, i.e. the reduced width of the bridge, does not vanish when s=o and s= 1. In 
other words, we have case 4' when the bridge has blunt ends. 

The form of the end zone can be conveniently described in the coordinates &= .@s, &= e-In, 
5, = 8%. Let now II be a region in a plane which resembles, outside the circle of large 
radius, a half-strip {(E,, EJ: & > 0, --h- (0) < %, < h+ (0)). The problem of the boundary layer then 
reduces to determining a function z0 harmonic in R3 and satisfying relations (2.4) and 
(2.5). It can be confirmed (using for example the Kelvin transformation and asymptotic 
formulas from Sect.ZO), that the corresponding SIC will tend to a constant value as 51--m. 
The problem arises here of determining the contour aXI for which the solution to of the 
problem will produce a constant SIC along 3s. We are unable to state whether such a contour 
exists. 

3. Variational ineqwdity for a bridge in.equiZibriwn in the limit. Let a system of 
cracks form a thin bridge near the contour I', of width &H(S). We shall assume that changing 
the load resulted in partial fracturing of the bridge, while the configuration of the cracks 
outside the neighbourhood of r remained as before (according to (1.12) the values of the SIC 
are large at the bridge edges, and this assumption is credible). We shall interpret the set 
of bridges resulting from the fracturing as a single bridge I?, of width &A(s), which may 
become equal to zero on some segments, and write r = {SE 10, ZI:h(s) = 0). The conditions 
that the crack edges do not close means that 

0 -< h (s) .< H (s) (s E [O, 21; (3.1) 

Let y be the distribution density of the normal force on the arc r\ r, appearing in 
Sect.1 and 2. Let us supplement this density by a zero on r and assume, in the course of 
deriving the variational inequality, that y is a smooth function on I?. Then the principal 
term of the asymptotic expansion will, as before, have the form (1.2). In the case of h(s)= 

Y fs) = 0 we have, according to (1.5t, ti((z) = (Jy)(s) -g(s)+ O(r), r-+0. Since a crack has 



been formed on r, it follows that d>O near r and 

A boundary layer appears 
mation to the SIC, similar to 

h (s) = V (s) = 0 ==+ (JY) (s) - g (s) > 0 (3.2) 

near the bridge (r \ rJEI enabling us to calculate an approxi- 
(1.12). We shall assume that the edges I'& are under the 
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conditions of limit equilibrium. Denoting by K, the critical value of the SIC we obtain, 
from (1.12), 

y (s) = (24-l Kc (i - Y) [2nEh (s)r/’ z x-‘/h ($1~ (3.3) 

This yields the quantity h (s) . We note that when sEr\r, Eq.(1.8) holds and we 
arrive at the formulas 

y (s) > 0 =+ {n-l [In (ek (s)) - 5 In 2 + In (xv (s)~)I - b (s)} y (s) + 
(JY) (s) - g (s) = 0 

(3.4) 

As usual /ll/, relations (3.2) and (3.4) can be written in the form of a variational 
inequality. By virtue of (3.2) and (3.4) we have 

(YB (XY")? V) + (JY? v) - (g, V) = 0 (3.5) 

Here (,I is a scalar product in L,(r) (or its expansion) and B(xya) represents 
the expression within the braces in (3.4). Formulas (3.2) and (3.4) yield, for any smooth 
non-negative function 8 on r, the relations 

of a 

ante 

Subtracting (3.5) from (3.6) we obtain the required variational inequality 

(VB (XV")? Y - B) + (JY, Y - 8) < (gv Y - 8) VP > 0 (3.7) 

We can confirm directly that the variational inequality (3.7) is, in fact, the problem 
minimum of the functional 

l/2 (VB (@), Y) t- l/z (JY? Y) - (&? + (2V Y> Y) (3.8) 

Let us determine the convex set on which the functional (3.8) is minimized. In accord- 
with (1.9) we denote by Hln(r) the space of functions on J? with the norm 

It was established in /12/ that H,, (T) is a Hermander space /13/ generated by the 

weight function ~(%)=(l+lnl%(+Ilnl%ll~". In other words, the norm in H,,(I) is con- 

structed by partitioning the unit from the norms in Hkl(H) calculated with the help of the 
Fourier transformation F,+ according to the formula 

11 I’; Hun 0-j II= s 11+ 1~ I % I + I In I % I II I V.+Y) (5) I2 d% 
R 

We stress that the inclusion H,,(r)cL,(I) is compact (this property leads to a discrete 

form of the spectrum of integral operator (1.10) used in Sect.1 and 2). We denote by L,l, (I) 

the linear manifold of functions on r such, that YP (Y) E I,. This is the Orlicz space 

constructed on N-functions z H M (I) = 5%~ (z)* (see e.g. /14/). 
Thus the convex set required should be constructed from non-negative functions contained 

within the intersection H,,(I) n L,,,. (r). 

If we have a separation near r, (it is necessary to make an assumption which would 
eliminate the possibility of a contact between the crack edges), 
function on r. 

then 9 will be a non-positive 
Then y=O will be a solution of the inequality (3.7) corresponding to 

the case of complete fracturing of the bridge. Such a (complete) fracturing corresponds fully 
to the idea of the unstable growth of cracks: the SIC increases as A (s) decreases. Never- 
theless we cannot make any assertions concerning the uniqueness of the solution y (even 
through non-trivial solutions of the inequality (3.7) may exist by virtue of what was said 
after formula (1.10)). 
are possible, 

Thus cross-connections between the cracks in the limit equilibrium 
although their state should be described as unstable. 

4. Variutional inequality for a partiutty fracturing bridge. 
bridge is a locally unstable process, 

Since the thinning of the 
it is convenient to assume that after partial fracturing 
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its width &A(S) can be zero or E@(S). At the points s at which h(s) = H(s), the con- 
dition Y(s)<x-'I*H(s) of equilibrium of the crack should hold (see (3.3) and (1.12)). We 
shall therefore consider the problem of minimizing the functional '/z (YB (W), Y) + 'i, (JY? Y) - 
(g, Y) on the convex set M = {y E HI, (I’): 0 < y < d/iljl’l*}, or the corresponding variational 
inequality 

(YB (E), Y - B) + (JY, Y - B) < (& Y - B) V@ E 1 (4.1) 

When g,<U on r (the bridge is under the condition of stretching), then trivial sol- 
ution YE 0 exists, but as before, the existence of other, non-trivial solutions cannot be 
excluded. Let y be such a smooth solution. Using familiar arguments /ll/ we establish the 
formulas 

Y (59 = 0 + (JY) (8) - &? 6) ,, 0 (4.2) 

0 < y (s) < x-"*If (5)"~ ==s B (H; s) y (s) + (Jr) (s) - g (8) = 0 (4.3) 

y (s) = x-";H (s)"* ==+ B (El; s) y (s) + (Jy) (s) - g (s) .< 0 (4.4) 

We assume that for the solution discussed the inequality sign holds -in (4.4) on the set 
r* of zero measure (only at certain points). Then the necessary relation (1.8) (the 
equation of equilibrium)will hold outside r* only if Y(s)>0 (the bridge remains unbroken 
at the point sf . The conditions Y(s) = 0 and (JY) (s)> g(s) mean that the crack edges have 
separated by a positive distance, and there is no bridge at this point any longer. In the 
case T(s) = 0 and (JY)(s) = g(s) both situations are possible (and for this reason the bridge 
may remain whole on the set P = {sEr: g(s) = 0) even when YZO). Therefore in the 
course of solving the variational inequality (4.1) we determine a zone of obligatory frac- 
turing, and a zone in which the bridge is certainly preserved. At the arc r" itself the 
deformations within the body are such, that it becomes immaterial whether a bridge is, or is 
not there. 

We stress that the variational inequality derived in /15/ which describes the variation 
in the form of a single crack growing quasistatically, differs significantly from (3.7) and 
(4.1). The problem is, that the paper by Nazarov f15f is concerned with the study of the 
stable development of the crack; in particular, a small change in the load led, generally 
speaking, to a small increase in the free surface, provided that avalanche-type growth of the 
crack did not occur. In the problem discussed here the bridge is narrow, and the increase 
in the free surface remains insignificant even in the case when fracturing took place near a 
large segment of the contour I?. Quasistatic fracturing of the bridge is not often realized, 
and the most probable cases are those in which neglecting the inertial terms leads to serious 
errors. It is precisely these conditions that must be related to the resulting non-uniqueness 
of the solution and the indefiniteness of the fracturing on the segment ro i: r. 

Let us finally consider a specific problem. Let two half-spaces be connected along the 
strip I‘,-= (~ER*:I~~I<E), and loaded with a pair of normal concentrated cleaving forces of 
strenght q“, applied at the points Y= (0, *I). The limit contour r is the straight line 
(y: y* = 0) 1 The function g is given by the equation g (s) = 40 (Jtp)-" (Y - i) (9 + 1)-I'* where s= yl. 
The solution of the limit problem is given by formula (1.21, but since the integral over r 
diverges at infinity, the second term in (1.2) has to be regularized anew. 

Let us assume that the fracturing took place symmetrically about the y, axis, and denote 
by a the half-length of the fractured part of the bridge. Since y(s)= 0 when IsI< and 
Y (3) = Y C-s) when Isl>a, we have 

According to what was said in Sect.2 and 4, the following relations must hold: 

y (3) [In (e/4) - ?I& (n (S - a))1 + R (W (4 - ng (4 = 0, s> a 

y (S) < x-'/n, S > n 

WY) (8) - fi (4 > 0, s< a 

(4.5) 

(4.6) 

(4.7) 



135 

As in (1.13), the principal term of the asymptotic expansion (in inverse powers of (la~l) 
is the function y0 (s) = --n 1 In (61'4) I-%. We note that YO (s) > 0 when s> n. The condition (4.6) 
holds in this case only if 

a > [Z (x+1 1 In (e/4) 1-2 ('IO&-'+ iv = 8 W) (4.8) 

Since the function v0 is small and g is negative on [-a, al, it follows that condition 
(4.7) holds. 

Analylsis of Eq.(4.5) shows that the function y possessing minimum smoothness on Ia, m) 
should vanish when s= a (thanks to the presence of the increasing terms --'/,y (s) In (s - a) 
and the unboundedness of the remaining terms in (4.5)). The function y0 does not have this 
property, i.e. an additional boundary layer appears near the point s= a of width 0 (EZ) 
(the square bracket in (4.5) is equal to zero when S= a+(16a)-lez). Since the asymptotic form 
is sought from the very beginning with an accuracy of only 0 (e), it follows that we can 
neglect this phenomenon. 

Restricting ourselves in the first approximation y0 to the density y, we shall consider 
the inequality (4.8) which is necessary for (4.6) to hold. In the case of s"< pe ?z (ne/%)"'K, 
1 In (c/4)( the right-hand side of (4.8) is not defined and the bridge is not subjected to 
fracturing. If on the other hand the load is greater than the critical value qe, then the 
quantity a will have to be positive (a part of the bridge has fractured), but the choice of 
a will remain arbitrary. The range [a" (4') + m) of possible values of a becomes narrower as 
the load q” increases. The resulting non-uniqueness can be removed by introducing an 
additional condition, for example by specifying the opening of the crack found at the point 
y = 0. 

Let the mechanism of fracturing of the bridge be quasistatic. The crack stops growing 
as soon as the SIC ceases to take supercritical values. Therefore, the non-emptiness of the 
set I",= {SE P: v(s)= ~-"'H(s)"~) can serve as a criterion for selecting the "quasistatic" sol- 
utions of the variational inequality (4.1). In the present case this condition can hold only 
in the case a = a0 (q"). 
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